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Abstract

The field of microfluidics has exploded in the past decade, particularly in the
area of chemical and biochemical analysis systems. Borrowing technology
from the solid-state electronics industry and the production of micropro-
cessor chips, researchers working with glass, silicon, and polymer substrates
have fabricated macroscale laboratory components in miniaturized formats.
These devices pump nanoliter volumes of liquid through micrometer-scale
channels and perform complex chemical reactions and separations. The de-
tection of reaction products is typically done fluorescently with off-chip opti-
cal components, and the analysis time from start to finish can be significantly
shorter than that of conventional techniques. In this review we describe these
microfluidic analysis systems, from the original continuous flow systems re-
lying on electroosmotic pumping for liquid motion to the large diversity of
microarray chips currently in use to the newer droplet-based devices and
segmented flow systems. Although not currently widespread, microfluidic
systems have the potential to become ubiquitous.
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INTRODUCTION

What is Microfluidics?

Microfluidics is the science and engineering of systems that manipulate small amounts of fluids at
length scales from a few micrometers up to a millimeter (1). The design and use of microfluidic
devices for fluid transport have found many applications in the life sciences, particularly in bio-
chemical analysis and the pharmaceutical industry, and in other areas including chemical syntheses
and environmental testing. Passively or actively controlled microfluidic components, such as mix-
ers, actuators, reactors, separators, sensors, valves, and pumps, have been developed for transport
processes and fluid control (2). The strength of microfluidic systems lies in their integration ability
(Figure 1); this has led to the rapid expansion of the field and development toward micrototal anal-
ysis systems (μTASs), commonly known as lab-on-a-chip systems (3). These idealized integrated
devices incorporate sample preparation, handling, detection, and analysis (4), and they enable
high-throughput screening studies and strive for simple incorporation in a user-friendly, auto-
mated system (5). Furthermore, their parallel analysis capabilities, short reaction and/or separation
times, and reduced reagent volumes allow microfluidic technologies to revolutionize biological
and chemical assays (6).

Concepts at the Microscale for Fluid Flow

The physical properties of microsystems are governed by scaling laws that express the variation of
physical quantities with the length scale, l, of a given system or object, provided that other external
quantities such as time (t), pressure ( p), and temperature (T ) remain constant (7). For instance, a
general scaling law frequently used for microfluidic systems expresses the ratio of surface forces,
such as surface tension and viscosity, to volume forces, such as gravity and inertia, as a system’s
dimensions are reduced. This scaling law can be expressed as

surface forces
volume forces

∝ l2

l3
∝ l−1 −→

l→0
∞, 1.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
Integrative, high-throughput, parallel-processing microfluidic systems for chemical assay applications that incorporate continuous flow
systems, microarray systems, and droplet systems. (a) A disc-based, automated enzyme-linked immunosorbent assay (ELISA) system
using innovative laser irradiated ferrowax microvalves (LIFM) to test for infectious diseases from whole blood within 30 min. The
numbers indicate the order of the LIFM operation. TMB is tetramethyl benzidine, a visualizing agent. Figure reproduced with
permission from Reference 13, copyright c© 2009, The Royal Society of Chemistry. (b) A multilayer microfluidic immunoassay system
containing microvalves and micropumps for the rapid and high-throughput detection of chemical compounds. The system is composed
of three layers, the upper fluidic and lower pneumatic control layers, which are separated by a thin polydimethylsiloxane (PDMS)
membrane. Roman numerals I–V represent the valve control lines for the parallel system, and numbers 1–5 represent fluidic control
valves for one system. Reproduced with permission from Reference 14, copyright c© 2009, The Royal Society of Chemistry. (c) An
integrated blood barcode chip (IBBC) using DNA-encoded antibody library (DEAL) barcode arrays. The system rapidly and selectively
samples a large panel of protein markers from whole blood (red blood cells, white blood cells, and plasma proteins). A–C represent
DNA codes, and numbers 1–5 represent DNA-antibody conjugate, plasma protein, biotin-labeled detection antibody, streptavidin-Cy5
fluorescence probe, and complementary DNA-Cy3 reference probe, respectively. Reprinted with permission from Macmillan
Publishers Ltd.: Nature Biotechnology, Reference 15, copyright c© 2008. (d ) A high-density DNA microarray system for genetic and
gene expression analysis at the whole-genome level by monitoring hybridization to open reading frames (ORFs) (16). Copyright c©
1997 National Academy of Sciences, U.S.A. (e) A schematic of a droplet microfluidic system for genetic analysis that uses restriction
endonuclease digestion (RD) and polymerase chain reaction (PCR) amplification followed by electrophoresis. V, valve; L, liquid entry
channel; B, buffer channel; E, applied electric field; A, air output. Reproduced with permission from Reference 11, copyright c© 2005,
The Royal Society of Chemistry.
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Table 1 Change in physical quantities with miniaturization

Physical quantity Change Length scale
Linear flow rate Reduced l 1

Volumetric flow rate Reduced l 3

Diffusive rate Increased On the order of l 2

Driving pressure Increased l 4

Gravity effects Reduced l 3

where l is the length scale and indicates the importance of surface forces in these micrometer-based
systems (2). Important scaling laws as a function of l for several physical quantities are presented
in Table 1.

In addition to scaling laws, dimensionless numbers, as shown in Table 2, provide further
insight into the physical phenomena occurring in microfluidic devices. Such numbers are derived
from fundamental equations governing the behavior of fluid flow (8). For instance, the simplified
Navier-Stokes equation is

ρ
du
dt

= −∇ p + η∇2u + f , 2.

Table 2 Change in dimensionless groups with miniaturization

Dimensionless
name and symbol Quantity Definition Change

Length
scale

Reynolds (Re) ρU 0 L0

η

Inertial forces
Viscous forces

Reduced l 2

Péclet (Pe) U 0 L0

D
Fluid convection
Fluid diffusion

Reduced l 2

Capillary (Ca) ηU 0

γ

Viscous forces
Interfacial forces

Reduced l 1

Damköhler (Da) DτR

L2
Reaction time

Transport time
Increased l 0

Marangoni (Mg) �γR
ηα

Surface tension gradient
Viscous forces

Reduced On the
order of

l 1

Bond (Bo) �ρg R2

γi

Gravity
Surface tension

Reduced l 2

Sherwood (Sh) κL
D

Convective mass transport
Diffusive mass transport

Reduced l 1

Deborah (De)
τ

(
γ

ρR3

)1/2 Relaxation time for polymeric liquid
Characteristic time

Increased l 3/2

Knudsen (Kn) λ

L
Mean free path

Physical length scale
Increased l 1

Weber (We) ρV 2

γ/R
Inertial forces

Surface tension forces
Reduced l 3
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where ρ is the fluid density, u is the fluid velocity vector, η is the viscosity, and f represents body
forces (8). The most commonly used dimensionless parameter in microfluidic systems obtained
by making the above equation dimensionless is the Reynolds number,

Re = ρU 0 L0

η
, 3.

where U0 is the characteristic velocity and L0 is the characteristic length. The Reynolds number
compares the relative importance of inertial effects and viscous effects; at the dimensions employed
by microfluidic devices, the Reynolds number is sufficiently low (typically Re � 2,000) that
viscous forces dominate, resulting in laminar flow conditions (8, 9). The Péclet number, another
important dimensionless parameter obtained from the same equations, compares the convective
and diffusive or dispersive effects in channels. This number indicates the degree and form of
mixing in fluid samples and is important when designing devices for sensing and separating flow
sources and ingredients (8). At the dimensions used in microfluidic devices, the Péclet number
is sufficiently small that diffusion dominates fluid mixing. The Reynolds and Péclet numbers, in
addition to other dimensionless numbers, are listed in Table 2; these parameters provide insight to
the microscopic flow properties in unique microfluidic systems and are explained in detail within
subsequent sections.

Why Microfluidic Chemical Assays?

Microfluidic continuous flow, microarray, and droplet-based systems have increasingly been
used in the miniaturization of large-scale chemical assays and analytical techniques (Figure 1).
Microfluidics enables a high degree of fluid control while simultaneously using a near-trivial
amount of expensive reagents. The incorporation of liquid handling, temperature control, and
target detection components into a single device allows for analysis and screening procedures to
be completed at greater speeds, with higher throughput and yield, and with improved selectivity
compared to their lab-scale counterparts (10). For instance, downscaling DNA analysis meth-
ods results in extremely efficient devices—the thermal cycling necessary for PCR (polymerase
chain reaction, i.e., DNA amplification) can rapidly be performed because of the incorporation
of temperature controllers, the efficient heat transfer, and the tiny thermal mass (10, 11). In ad-
dition, the ability to densely pack microfluidic channels and components together on a device
(12) that is essentially photocopied allows for the economical production of highly parallelized
systems for high-throughput analytical studies (13–16). Significant technological advances have
been made in the burgeoning field of microfluidics; however, many of the systems remain in the
proof-of-concept stage (1). As a result, the full potential of microfluidics will remain unknown
until the transition to widespread commercialization occurs. In this article, we review a variety of
concepts that contribute to the construction of highly integrated microfluidic systems and how
these concepts have been applied in chemical analysis applications.

CONTINUOUS FLOW ASSAYS

Principles of Flow Control

The first microfluidic chips used continuous streams of liquid in the channels, and the first
widespread technique for controlling this flow was electroosmosis. Electroosmotic control was
first developed for flow control in capillary electrophoresis (CE). Also known as capillary zone
electrophoresis (CZE), CE first arose in the early-to-mid-1980s as a separation technique
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complementary to gel-based electrophoresis and high-performance liquid chromatography
(HPLC), and was used for separating electrolytes in solution (17, 18). In addition to the elec-
trophoretic motion separating the solutes, electroosmotic flow also moves the bulk liquid.

The phenomenon of electroosmosis arises from the electrolytes in solution equilibrating with
the surrounding channel walls, forming an ionic double layer—the Debye layer—near the solid-
liquid interface. An applied electric field then causes this layer to migrate, resulting in bulk flow
throughout the capillary. This flow can be modeled simply by including an extra term for electrical
forcing in the Navier-Stokes equation,

ρ
du
dt

= −∇ p + η∇2u + ρeEext, 4.

where ρ is the fluid density, u is the flow velocity vector, p is the pressure, η is the dynamic viscosity
of the fluid, ρE is the electric charge density in the double layer, and Eext is the external applied
electric field (19).

By the mid-1990s, the technique had been developed into a general tool for fluid pumping and
controlling microfluidic environments distinct from CE applications (20). Through the continuous
application and manipulation of voltages, the technique, originally developed in glass capillaries,
can be successfully applied in polydimethylsiloxane (PDMS), silicon, or glass microchannels (21).
In addition to ease of control, the other major attraction of electroosmotic flow is that the fluid
velocity is not hindered by decreasing the channel dimensions.

Pressure-driven flow, however, is severely affected by the channel dimensions but is the most
straightforward microfluidic flow control technique. Analogous to macroscale fluid pumping, mi-
crofluidic pressure-driven flow can be used in either a constant pressure or a constant displacement
mode. Early use focused on both gas and liquid flow (22), but today liquid is the predominant
fluid medium. Flow that is laminar, incompressible, and viscous, in a pipe with its length much
greater than its diameter—criteria met by microfluidic flow—is described by the Hagen-Poiseuille
equation,

�P = 12ηLQ
πd 4

, 5.

where �P is the pressure drop across length L of pipe with diameter d, for a flow rate Q of a fluid
with viscosity η. As the channel diameter decreases, the pressure needed to achieve the same flow
rate increases dramatically.

The simplest techniques for pressure-driven flow use macroscale pressure sources, such as a
pressurized fluid reservoir or a vacuum source, connected to the microfluidic device, rather than
microscale sources located on-chip. Alternatively, constant volumetric flow can be used (e.g.,
a syringe pump), but care must be taken to avoid high pressures in the connecting tubing. Both
cases necessitate bulky external equipment; for some applications this is acceptable. For portability
and/or small size, various designs for on-chip micropumps have been developed (23). Many of
these designs are based on flow driven by a diaphragm—piezoelectric driving is common—but
others rely on magnetic driving or acoustic streaming (24).

Another technique prominent at the microscale is the use of surface forces to control flow.
Because of the increased surface area-to-volume ratio, interfacial interactions between the fluid
and the channel walls can be used to pump fluids through the device (25). Alternatively, capillary
pressure-driven flows can be generated by using heat to alter the surface tension (26). Like pressure
flow, capillary flow can be described by the Hagen-Poiseuille equation with the addition of a
capillary pressure term (27):

�P = Pcapillary, 6.
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Pcapillary = 2γ cos θ

r
, 7.

where γ is the surface tension, θ is the contact angle between the fluid and the channel wall, and
r is the radius of the channel.

Similar to electroosmotic flow, gravity-driven or hydrostatic flow was first studied in the mi-
crofluidic regime in relation to CE. Initially viewed as problematic, as it contributed to zone
broadening in CE (28), it was later developed into a flow control technique of its own. Gravity-
driven flow is generated either through tilting the entire device (29) or by filling an inlet reservoir
to a height greater than that of the device channels; the former obviates the need for external
equipment such as an adjustable stage, whereas the latter allows precise control of a constant vol-
ume rate. And similar to electroosmotic flow, gravity-driven flow can be described by the addition
of a term to the Navier-Stokes equation,

ρ
du
dt

= −∇ p + η∇2u − ρg∗z, 8.

where g∗ = g + ωr2 and combines both gravitational and centrifugal forces. In addition to
portability and lack of external power or pressure requirements, gravity-driven flow offers the
advantage of gentleness, an important consideration in applications such as flow cytometry of
cells (30). A related technique is the use of centrifugation to drive sample flow in compact disc
(CD)-sized lab-on-a-disc devices (31). Samples and reagents are loaded onto the disc, which is
usually made of poly(methyl methacrylate) (PMMA) in the size and shape of a CD or digital video
disc (DVD). The disc is then spun in a standard disc drive to carry out the analysis operations.
This technique has the advantage of using commonplace consumer-level equipment to operate,
and some devices are even being designed to use the laser in DVD drives for various tasks.

Phenomena and Components for Chip-Based Assays

Many phenomena and components can be used to build microfluidic array systems. One of the
most exploited phenomena on the microscale is the laminar nature of microscale flows. This eddy-
free flow allows for the formation of segregated composition in regions generated by combining
distinct chemical streams. At high Péclet numbers—readily achievable at the microscale—these
boundaries can be easily maintained (32). The dimensions and duration of the gradient streams
depend on the Péclet number and can be approximated with the relation:

D = L2/t. 9.

The investigation of many biological or chemical phenomena, such as cell signaling and chemo-
taxis, involves concentration gradients (33). By using branched networks of channels with appro-
priate hydrodynamic resistances, an inlet stream can be repeatedly diluted and mixed to create gra-
dients with different concentration profiles (34). Simple networks produce linear profiles, whereas
complex networks can generate double peaks, sawtooth patterns, and other more complicated
shapes (35, 36). The gradients can also be used to create complex topography in microfluidic
channels by generating gradients in chemical etchant concentrations.

Although the laminar nature of microfluidic flow allows the generation of sharp gradients, this
lack of turbulent flow can hinder mixing of reagents. At smaller length scales (i.e., submicrometer),
diffusive mixing occurs on the order of milliseconds. However, in microfabricated structures, which
may be hundreds to thousands of micrometers wide, complete mixing in stagnant fluid may take
as long as an hour, and innovative strategies have been developed to overcome this delay. For
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instance, oscillating electroosmotic flow can induce an electrokinetic instability that results in
rapid mixing (37). In other flow modes, mixing can be induced by clever channel design (38) or
by patterning wells, hydrophobic patches (39), or other disruptions on the floor of the channel,
resulting in a high degree of mixing within a few hundred micrometers (40). In droplet systems,
simply moving the drop causes recirculation of the liquid and, for the correct velocity and travel
time, mixing can occur in fractions of a second. Solute adsorption to the channel surface must
be considered and can be minimized by surface coating strategies such as radio-frequency glow
discharge plasma deposition (RF-GDPD) or by preparing the surface with a known adsorbed
protein (41).

Valves are one of the most basic components of microfluidic arrays and have been constructed
using both hard (e.g., silicon and glass) and soft (e.g., PDMS) substrates (Figure 2). By far the
most common is the multilayer elastomeric PDMS valve that applies pressure or vacuum to one
channel in order to squeeze closed or expand open adjacent channels (42, 43). Through clever
design, multiplexers using binary valve patterns in a combinatorial array can operate hundreds or
thousands of these individually addressable valves to produce chips that can perform massively
parallel operations (12). Plug-type valves are the most common active valves made from hard
substrates. These include both valves that polymerize in place (44) and those that are wax-like.
Wax valves have the added advantage that they can be electronically addressed by melting with
on-chip electrical heaters, thus limiting the required external connections (45).

Formation of complete assay systems relies on combining valves and phenomena into a com-
plete working system. Most often, this requires constructing a reaction chamber (i.e., merely a
section of channel), performing a reaction, and then detecting the extent of that reaction. The
most prevalent example of this is the detection of specific DNA sequences using PCR. Glass cap-
illaries had been used to reduce sample volumes and speed the requisite heating and cooling cycles
for PCR, but fluid handling remained a challenge until the technique was integrated into micro-
fabricated devices (46). Generally, heating is accomplished on-chip using polysilicon or metal for
electrical heating. Packed bead reactor chambers have also been developed with both magnetic
and nonmagnetic beads (47).

Detection of completed PCR reactions is predominantly conducted by adding fluorescent
dyes and electrophoretically separating DNA strands. As we have discussed, the first microfluidic
devices used electric fields to pump fluids; these fields can also be used to separate ionic species
(e.g., DNA) with the addition of linear polymers to achieve the desired resolution. Gel matrices
can be incorporated into microfluidic devices to attain an even higher resolution for the same
length channel, and these gel systems have been used for DNA/RNA or protein separations on-
chip with the same techniques used at the macroscale. Use of liquid chromatography has been
more limited owing to the difficulties involved in high-pressure applications at the microscale, but
some work has been conducted (48). Recently, use of surface plasmon resonance (SPR) imaging
techniques in microfluidic devices has been increasing; SPR is attractive because it requires no
labeling (49). In addition to separation, concentration of species is also possible, usually through
the use of nanochannels to generate exclusion regions or extended space charge regions (50).
Concentrations of proteins or other analytes on the order of a million-fold have been reported.

Processing of the reaction products typically is not done in microfluidic systems although
devices for postreaction processing have been developed including sample fraction collection,
labeling, and sorting (51). Postreaction processing is widely used in sorting systems, particularly in
cell flow cytometry. The small sample volumes and precise fluid control make microfluidic devices
well-suited for this application. Furthermore, the transparency of glass and PDMS substrates
allows cells or particles to be detected and sorted fluorescently (52). Other sorting schemes take
advantage of the laminar nature of microfluidic flow. By flowing a particle solution through an
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array of pillars of appropriate dimensions, smaller particles can be made to travel with the fluid
while the pillars bump larger particles across streamlines (53). This technique can also be applied
to cells (54) and their lysis products (55) to separate larger cell components such as chromosomes
from smaller proteins and membrane fragments. Acoustic techniques such as acoustic differential
extraction have also been developed and offer enhanced efficiency compared with macroscale
techniques (56). Aside from physical methods, the aforementioned transparency of common device
substrates makes them compatible with optical techniques as well. For example, by introducing a
3D optical lattice into the microfluidic device, particles can be sorted precisely and accurately on
the basis of their size (57).

A natural application for microfluidic devices is the study of small-scale biological samples,
especially cells (58, 59). Arrays of individually addressable microchambers allow cells to be exposed
to a variety of extracellular conditions and monitored for changes in a multiplexed approach
(60, 61). Particles with unique patterns to act as barcodes can be fabricated; these contain distinct
analytical targets (62). Arrays of microposts can force cells into different shapes as they grow and
have revealed strong effects of shape on cell behavior and differentiation (63).

HETEROGENEOUS ASSAYS: ARRAY CHIPS

The first microarray chips were based on principles similar to those of macroscale assays such as
Southern blotting for DNA or tissue core blocks for tissue samples. As microtechnology evolved,
the application of these principles expanded and resulted in increasingly powerful devices. For
example, in 1987 the use of DNA spotted onto filter paper for gene expression analysis was first
reported with an array of tens of samples (64). By 1995, microarray technology was able to produce
a single array with 20,000 complementary DNA (cDNA) targets, and in 1997, the first complete
eukaryotic genome-on-a-chip was reported for yeast (16). The initial tissue sample arrays consisted
of approximately 100 samples in a paraffin block (65); less than ten years later, blocks could contain
1,000 samples, each of which could be subject to 200 different tests (66).

These techniques soon were applied to other applications (Figure 3). Proteins of various kinds
(67), especially antibodies (68), have proven very useful for probing the proteomes of different
organisms, starting with yeast in 2001 (69). In addition to gene analysis, gene synthesis can be
carried out and multiplexed on array chips (70). MicroRNAs (miRNAs)—small noncoding RNAs
that regulate gene expression—are thought to be involved in many diseases and are widely inves-
tigated; microarray technology has proven useful for monitoring miRNA expression levels as well
(71). Finally, libraries of other chemical compounds can be arrayed and tested for interactions
with biological or other samples (72). Current efforts to reduce the cost of genome sequencing
for personalized medicine include the use of pyrosequencing on array chips, arrays of zero-mode
waveguides for real-time sequencing analysis (73), and arrays of self-assembling DNA nanoballs
(74).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
Array chip technology advancement over time. (a) The earliest DNA arrays were fabricated through manual spotting on filter paper
(64). (b) High-speed robotic printing allowed the creation of DNA microarrays. From Reference 92; reprinted with permission from
AAAS. (c) Today, commercial DNA array chips can search for almost a million single-nucleotide polymorphisms (SNPs) across the
whole human genome. Copyright c© 2008, Affymetrix. (d–f ) Array technology is versatile, allowing multiplexing analysis of proteins,
RNA, and nonbiological chemicals as well as on-chip synthesis of genes. Panel d from Reference 70, reprinted by permission from
Macmillan Publishers Ltd: Nature, copyright c© 2004. Panel e from Reference 72, copyright c© 2003, National Academy of Sciences,
U.S.A.; Panel f from Reference 93, reprinted with permission from AAAS.
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Array Fabrication

Microarray chips typically perform heterogeneous reactions (i.e., the reaction occurs at the surface
rather than in the bulk), and thus their fabrication is more complicated than that of standard
microfluidic systems. Photolithography is the standard procedure used to fabricate such chips
because the patterning can access each location on the array containing a photolabile protecting
group. Through use of a mask or other spatially addressable technique, light is used to selectively
remove protecting groups (75). The desired building block molecule, which often is a specific
nucleotide or amino acid, can be added sequentially to the deprotected locations and subsequently
reprotect the selected area. As a result, different molecules can be synthesized in situ at different
locations on the array; combinatorial strategies can be used to optimize the specific protocol (76).
Such array chips are limited by the resolution of light (similar to the Rayleigh criterion for optical
observation) unless more advanced fabrication techniques such as electron-beam patterning are
used. For well-based arrays that perform homogeneous reactions, the loading of the individual
reagents into each well, not the fabrication of the wells themselves, presents the bulk of the
challenge.

Another widespread fabrication method is deposition, or spotting. Rather than synthesizing the
molecules directly on the chip, molecules are synthesized separately and sequentially bound to the
substrate. This technique has been useful for the creation of chips with arrays of long molecules
whose individual photolithographic synthesis would be overly complicated (77). For example,
DNA microarrays synthesized in situ are often on the order of tens of base pairs; spotted DNA
microarrays are commonly on the order of hundreds of base pairs (78, 79). The two most common
deposition methods are pin-based fluid transfer (80) and piezoelectric inkjet-based printing (81).
After transfer of the fluid to the substrate, a reaction with the functionalized surface covalently
bonds the molecules to the chip.

Reading and Analyzing Arrays

Subsequent to fabrication and hybridization of the reagents or samples, the array chip must be read
spatially to determine the result of the assay. The most common methods involve hybridization of
a probe followed by detection of that probe through fluorescence. This process is dictated by the
interplay between mass transfer of the probes and the rate of the hybridization reaction (i.e., the
Damkohler number). For example, hybridization of fluorescent probes is useful for detecting single
nucleotide polymorphisms (SNPs) and other small changes in genetic sequence (76). Sandwich
assays are a powerful tool for microarray protein detection applications. By combining protein
sandwich assays with DNA array chip-based detection, attomolar detection of protein analytes
has been reported (82).

Rather than hybridize probes to the sample, analysis can also be conducted by monitoring
on-chip reactions with the sample as they occur. For example, one DNA sequencing method uses
an array of DNA fragments in wells on an optical fiber chip (83). Pyrosequencing (84) is then
carried out in each well, and the photon release associated with each nucleotide-incorporation
event is detected. Thus, as the sample DNA fragment is replicated, it is also sequenced. Other
methods rely on spatial detection of incorporation events; for example, binding sample DNA to
a substrate, incorporating fluorescent nucleotides base by base, and observing this incorporation
optically (85).

Analysis of the collected data from array chips can be performed by many techniques. One
approach used in gene expression analysis is to cast a wide net with a chip containing random
sequences of cDNA. Transcribed mRNA produced under a variety of physiological conditions can
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then be bound to the chip, and, through fluorescent detection, the differences are noted. Regions
containing differences across conditions can then be sequenced and analyzed (86). Gene expression
can also be studied with cluster analysis (87), a standard statistical tool wherein individual data
points are grouped algorithmically into clusters. These algorithms allow genes to be arranged
according to similarity in function, which can provide insight into the purpose of unknown genes
in light of their clustering with known genes. A wide selection of clustering algorithms is available
including hierarchical, portioning, and density-based methods (88).

Additionally, significance analysis of microarrays (SAM) can be used to determine which al-
terations in gene expression are statistically significant with gene-specific t tests (89). The basic
SAM algorithm consists of (a) ordering test statistics according to magnitude, (b) computing the
ordered null (unaffected) scores for each permutation, (c) plotting the ordered test statistic against
the expected null scores, (d ) calling each gene significant if the absolute value of the test statistic
for that gene minus the mean test statistic for that gene is greater than a stated threshold, and
(e) estimating the false discovery rate based on expected versus observed values (90, 91). The need
for biological statistical analysis that the widespread use of large-scale sequencing and array chip
technology (92, 93) demands gave rise to the field of bioinformatics.

DROPLET MICROFLUIDICS

Droplet-based microfluidic systems enable the miniaturization and compartmentalization of re-
actions into picoliter- to microliter-volume droplets that are separated by a second immiscible
fluid. Droplets remain mobile in closed-conduit and open-conduit microfluidic channels, similar
to continuous flow systems; however, the droplets behave as isolated chambers that allow reac-
tions to be performed in parallel without cross-contamination or sample dilution. Furthermore,
reactions are not required to be stationary, as in array chips. As a result, microfluidic droplet-based
systems provide a high-throughput platform for biological and chemical research.

One of the first droplet-based assay systems was the continuous gas-segmented flow analysis
(SFA), also known as a continuous flow analysis (CFA), system. In the SFA-based AutoAnalyzer
developed in the 1950s by Skeggs, an aqueous stream was segmented into liquid slugs separated
by air bubbles (i.e., the second immiscible fluid) (94). This technological advance significantly
increased the number and rate of sample processing events, as each slug acts as a distinct reaction
microchamber. The isolation of each droplet prevented sample interaction, carryover, and dilu-
tion by reducing longitudinal dispersion effects (95, 96). Nevertheless, the compressibility of air
resulted in uncontrolled fluid behavior; this issue is addressed with the use of water-in-oil droplets.

Isolation and Compartmentalization

Picoliter- to nanoliter-sized droplets in closed conduit systems are typically generated with passive
methods by introducing nonlinearity and instability into laminar, two-phase microfluidic flow
systems (97) (Figure 4a). Two or more streams of immiscible fluids are combined at a rate large
enough to allow shear force at the fluid interface to break one continuous phase into discrete
droplets (98). The immiscibility of the two phases ensures the isolation and compartmentalization
of each phase. The geometry of the junctions varies; however, the basic droplet formation method
typically involves coflowing streams emerging from a common origin or cross-flowing streams
entering a T-junction (99).

Droplet formation is governed by the capillary number, Ca = ηU 0
γ

, where η (Pa s) and
U0 (m s−1) are the viscosity and velocity of the continuous phase, respectively, and γ (N m−1)
is the interfacial tension between the immiscible phases (100). At low capillary numbers
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Figure 4
Droplet formation using passive and active mechanisms. (a) Passive droplet formation using coflowing streams (top), cross-flowing
streams at a T-junction (middle), and flow focusing (bottom). Qc, flow rate of continuous phase; Qd , flow rate of disperse phase; w, width;
H, height. Reproduced with permission from Reference 99, copyright c© 2007, IOP Publishing. The size of the droplets can be
controlled by adjusting the flow and liquid parameters. (b) In active droplet formation, the surface tension of the droplet can be adjusted
by the application of a voltage, which causes the droplet to wet the substrate surface. By adjusting the strength and the number of
sequential electrodes that are activated or deactivated, a droplet can be pinched off from the liquid reservoir; m and n represent the
number of columns and rows, respectively, on the device. (i ) A droplet can be formed if the electrode separating the liquid arm and a
reservoir is deactivated, which causes the droplet to pinch off. Droplets can be (ii ) split if opposite electrodes or (iii ) merged if the
adjacent electrode is activated. (iv) Droplets can also be transported by sequential activation of neighboring electrodes. Reproduced
with permission from Reference 108, copyright c© 2011, IEEE.

(i.e., Ca < 10−2) the interfacial force dominates the shear stress, and the ratio of the volumetric
flow rates between the two immiscible fluids governs droplet formation dynamics (101). When
Ca > 10−2, the shear stress dominates, and the channel dimensions, channel geometries, and
fluid flow properties all influence the droplet breakup process (101). Passive droplet generation
techniques are ideal for experimental conditions requiring a large number of droplets, such as
high-throughput or parallel analysis applications (e.g., large-scale PCR) (102) or cell culturing
techniques (103). Furthermore, the composition of the neighboring droplets can be controlled by
adjusting the relative concentration of the upstream aqueous solution (104). This control is espe-
cially useful for chemical analysis applications such as enzymatic assays (104, 105), drug discovery
assays (105), and protein crystallization techniques (104) in which various concentrations of initial
analyte or solutions must be tested to optimize a procedure (104).

Droplets can also be formed with active mechanisms (Figure 4b). Recently, surface acoustic
wave (SAW) and electrohydrodynamic (EHD) techniques increasingly have been used; these pro-
cesses are commonly performed in open conduits and do not require any external pumps. SAW
relies on the creation of an acoustic pressure gradient in the droplet along the direction of wave
propagation; the gradient creates a force in the same direction and induces fluid flow (106). Never-
theless, EHD methods such as dielectrophoresis (DEP) and electrowetting on dielectric (EWOD)
remain the most extensively studied techniques for active droplet transport and manipulation.
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DEP is based on electromechanical forces exerted on electrically neutral liquids when the
fluid is exposed to nonuniform electric fields; this results in the attraction of polarizable fluid
toward regions with higher electric field intensity (104). In this case, the liquid must be of higher
dielectric permittivity than the surrounding fluid. The primary forces involved with DEP are the
wetting force on the interfacial line between the droplet, surrounding medium, and the contact
surface; the force on the fluid interface; and the body force owing to the pressure gradient in the
fluid (98). The liquid profile is dependent on the frequency of the applied field. Below the critical
frequency, given by

fc = Gw

2π (Cd/2 + Cw)
, 10.

where Gw is the conductance, Cd is the dielectric coating, and Cw is the capacitance, the entire
voltage drop occurs across the dielectric layer, and the liquid becomes equipotential and wets
the entire electrode surface. Above the critical frequency, only some portion of the total applied
voltage drop occurs in the water and, as a result, the liquid remains in drop form (107). By
manipulating the frequency and magnitude of the applied voltage, the size and uniformity of the
droplets can be controlled.

In contrast, EWOD-based droplet platforms apply an electric field to reduce the solid-liquid
interfacial energy, rendering the solid surface hydrophilic and enhancing the surface’s wettability
(108). This correspondence between the solid-liquid interfacial tension, γSL, and the applied
voltage, V, is shown by Lippmann’s equation,

γSL = γ0
SL − εV 2

2d
, 11.

where γ0
SL is the interfacial tension at zero applied potential and ε and d are the dielectric constant

and thickness of the insulating film, respectively (109). The droplet formation process is initiated
as a series of adjacent electrodes are actuated and a liquid protrusion is formed; when intermediate
electrodes are sequentially grounded, these surfaces revert back to their hydrophobic state, forming
a droplet from the contained fluid. With this mechanism, the strength and frequency of the applied
electric field and the width of the channel determine the resultant droplet size.

Reagent Addition and Mixing

Conducting a chemical assay in a microfluidic droplet often requires addition or fusion of picoliter
to nanoliter volumes of reagents to initiate reactions (Figure 5a,b). The mechanism for passive
droplet fusion involves three steps: (a) droplet collision, (b) film drainage, and (c) film rupture.
The rate and efficiency of droplet coalescence depend on the fluid drainage dynamics near the
contact regions between the droplet interfaces (110) and surfactants that stabilize emulsions by
increasing deformation and causing surface tension gradients (111). The drainage dynamics can
be controlled by adjusting the fluid flow rate, droplet generation frequency, and channel design,
with higher rates of film drainage increasing the coalescence rate (110, 112). Furthermore, the
rate of film drainage is dependent on the viscosity ratio of the two fluids and the surfactant at
the fluid interface (113). Higher viscosity ratios render the interfaces less mobile, and surfactants
stabilize droplets thereby reducing coalescence events (114). Surfactant effects are determined by
the Marangoni number, which is the ratio of surface tension forces to viscous forces. When the
Marangoni number, Mg = E/Ca , where E is the Gibbs-Marangoni elasticity, exceeds a critical
value, the interface is saturated with surfactant, and further increase of surfactant concentration
has no influence on coalescence (113).
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Droplets can also be fused actively with electric, magnetic, thermal, or optical mechanisms
(Figure 5c). In DEP fusion, the droplet composition must be dielectrically distinct from that of
its carrier fluid for the drop to become polarized. Typical operation involves activating an elec-
trode adjacent to the target droplets to guide neighboring droplets toward the region with higher
electric field. Coalescence in this central region occurs in a fashion similar to that in passive fusion
techniques (98). On one hand, unstabilized droplets will spontaneously fuse, reducing the system’s
entropy and surface energy. Stabilized droplets, on the other hand, may not spontaneously fuse;
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electrical pulses or larger voltages are sometimes needed to induce coalescence (115, 116). Non-
electrical means, e.g., magnetic beads (117) or optical tweezers (118), have also been demonstrated
as fusion mechanisms. Magnetic particles can be used to bring two droplets together until fusion
occurs (117). Optical tweezers also offer precise control and accuracy for fusion events but have
limitations owing to their complicated and expensive setup (118).

Once reagents are fused with sample droplets, the slow mixing times inherent in laminar flow
systems require careful design to encourage on-chip mixing. Without convection, the contents of
fused droplets will remain segregated, mixing only by molecular diffusion (119). In mass transfer,

the diffusion mixing time can be approximated by tdiff = s 2
0
D , where s0 is the initial striation length

and D is the diffusion coefficient. As a result, convective flow and chaotic advection have been
used in passive systems to reduce the mixing time by essentially reducing striation length (120)
(Figure 5d ). For a droplet traversing a straight channel, there exists a critical velocity,

V c = π2
(

L
d

) (
D
d

)
, 12.

where L is the droplet length, D is the solute diffusivity, and d is the microchannel depth, above
which convection-based mixing dominates and below which diffusion-based mixing dominates
(121, 122). Convective mixing is preferred, and complete mixing can occur in fractions of a second
as long as the drop traverses at least 3–5 drop lengths (123). Chaotic advection, in which unsteady
fluid flow is formed as the droplets move through winding channels, works on a similar principle:
The drop motion results in an exponential decrease in the striation length (120, 124), and the
mixing time, tmix,ca, is proportional to the time scale for convective transport. In particular,

tmix,ca ∼
(aw

U

)
log(Pe ), 13.

where a is the dimensionless length of the plug relative to the width, w, and U is the flow velocity
(124). Chaotic advection has been reported to reduce mixing time significantly, as the winding
channels cause droplets to undergo the baker’s transformation (i.e., the droplets are stretched,
folded, and reoriented) (124, 125).

When passive mixing techniques are not sufficient, active mixing methods can be used. Active
techniques, which are predominantly electrically controlled, provide benefits over passive tech-
niques because mixing occurs in more confined regions and mixing in a single droplet can be
controlled (Figure 5e). Rapid oscillation-based mixing is achieved through controlling the charge
of neighboring electrodes which causes the substrate surface to wet and dewet sequentially (126).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5
Droplet fusion and mixing using passive and active mechanisms. Droplets can be passively fused via two mechanisms. (a) Adjust the
channel geometry and size (A, B, C) to reduce the liquid flow rate such that two droplets come into contact and fuse. Reproduced with
permission from Reference 110, copyright c© 2006, The Royal Society of Chemistry. (b) Adjust the flow rate to instigate droplet
collision and fusion events. Qc, flow rate of continuous phase; Qd, flow rate of disperse phase; w, channel width. Inset i shows droplet
formation at the T-junction, and inset ii shows how the resultant droplet streams interact at the downstream T-junction. Reproduced
with permission from Reference 112, copyright c© 2009, The Royal Society of Chemistry. Droplets can also be actively fused by (c)
applying an electric field potential across two adjacent droplets, which causes instability at the oil/water interface, inducing fusion.
Reprinted with permission from Reference 115, copyright c© 2006, American Institute of Physics. (d ) Rapid mixing techniques in
passive systems can be accomplished by flowing droplets through winding channels, which change the internal circulation flow patterns;
d, distance; t, time; U, flow rate (120). Copyright c© Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. (e) With
the use of electrodes, droplets can be actively mixed by rapidly adjusting the hydrophilic property of neighboring electrodes, which
causes the droplet to shift back and forth, or by sequential droplet splitting and merging. Reproduced with permission from Reference
127, copyright c© 2003, The Royal Society of Chemistry.
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Splitting and merging techniques often utilize a three-electrode system. Droplets are split when
current is applied to neighboring electrodes and the central electrode is grounded; however, when
the central electrode is activated and the neighboring electrodes deactivated, the droplets will again
merge (127). Finally, a linear and planar array method can be used to introduce bidirectional fluid
motion in the droplet (127, 128).

Reactions and Postprocessing

The ability to fuse and mix large quantities of droplets in microfluidic devices enables large-
scale, parallel assay reactions to be performed. Each droplet behaves as a separate microreaction
chamber; the number of reactions depends on the quantity of droplets that can be isolated in each
channel or chamber. By arranging droplets in array formats within channels (105) or microarray
plates (129), parallel reactions can be conducted with varying reagent types or concentrations.
Reactions, such as those in PCR, enzyme assays, or cell-based assays, require thermal modulation.
As a result, resistive heaters and temperature sensors have been fabricated on-chip to control the
temperature of the system locally (11), or external heating elements can be incorporated to control
the temperature of larger systems (102).

After the reactions have taken place, the products within the droplet may need to be purified,
or the droplet itself may need to be split into smaller droplets for further analysis (Figure 6a,b).
Additionally, the initial droplet may need to be split into smaller droplets for parallel assay appli-
cations or for controlling content concentrations (130). Passive droplet fission techniques include
the use of T-junctions, branching channels, or channel obstructions. Passive fission techniques
in T-junctions are governed by the Ca number (see Table 2), the viscosity ratio η1/η2, and the
flow rate ratio Q1/Q2, where η is the viscosity and Q is the flow rate (131). The relative size
of the daughter droplets is precisely controlled through one or more of these variables. Droplet
fission in microchannels was first demonstrated by constricting the channel dimensions at the
branching point (T-junction), having the droplet elongate into both of the daughter channels,
and then continuing the flow of the continuous phase until droplet fission occurred (120). For
other T-junction-based systems, the relative sizes of the daughter droplets can be controlled by
modulating the relative resistances of the side channels and the flow rates of both the dispersed
and continuous phases. In this case, the formation of identically sized daughter droplets at the
T-junction is governed by the critical capillary number,

Cacr = αε0

(
1

ε
2/3
0

− 1

)2

, 14.

where α is a dimensionless constant that is a function of the viscosity difference of the two fluids
and the geometry of the channel, and ε0 is the ratio of initial droplet length to initial droplet
circumference (132). In addition, droplet splitting and the resulting sizes of the daughter droplets
can be controlled through the strategic placement of a channel obstruction (98).

As with all operations, droplet fission can be controlled actively, with electrical, magnetic, or
thermal control. The concept of droplet fission is essentially identical to that of droplet formation
because both processes involve separating one liquid entity from another. For instance, in EWOD,
electrodes on opposite ends of the droplet are activated to reduce the liquid-surface interfacial
energy so that the droplet wets the surface; upon removal of the field from the central electrode, the
central region is rendered hydrophobic, separating the droplets (133). Magnet-based mechanisms
have also been used; for instance, magnetic particles inside a droplet can be actuated to separate,
thus entraining fluid and splitting the drop (117). Droplets also can be split by thermal actuation,
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in which neighboring sides of the droplet are heated, reducing the viscosity and lowering the
interfacial tension of the outer edges of the droplets. As a result, the droplets naturally veer
toward regions of higher temperature (131)—this phenomenon is akin to the motion of droplets
in hydrophobic environments toward regions of higher temperature (26). By strategically heating
certain regions in the microfluidic channels, such as one of the daughter channels of a T-junction
system, unevenly sized droplets can result from the fission process.

Droplet sorting is highly advantageous to control droplet volume for fission or fusion pro-
cesses, or for selectively enriching specific droplet subpopulations (Figure 6c,d ). Passive sorting
most commonly uses size-based techniques that control the flow rate and flow geometry (130,
134). For example, size-based sorting can be used to remove residual or satellite droplets created
during the droplet formation process, thus increasing the monodispersity of the subpopulation
(130). Sorting based solely on size does not find many applications in biochemical assays as
content-based sorting is desired. However, in cases in which droplet content correlates directly
with droplet size, such as cell encapsulation, passive sorting mechanisms may be used to sort
empty and cell-occupied droplets (134).

Content-based sorting is more commonly achieved with active mechanisms such as sensors,
actuators, and valves. Recently, nonmechanical active sorting mechanisms have been developed
that separate target droplets with electric fields (135) or localized heating (136). DEP-based sorting
techniques use electric fields to electrostatically charge the droplets and guide them into their
designated downstream channels through steering or deflection mechanisms (135, 137). The
degree of control is determined by the field gradient generated, which depends on the electrode
location and shape (98). Using DEP, droplets can be sorted according to fluorescent content;
droplets are categorized by their fluorescence intensity, and target droplets are separated by a pulse
of high-voltage AC emitted across electrodes adjacent to the sorting channel (138). Although not as
common as DEP-based sorting, EWOD sorting is achieved by selectively changing the interfacial
energy between the droplet and the surface to split the droplet. This driving mechanism for
droplet splitting can be applied to electrophoresis; as a result, the contents of the droplets can
be sorted and split sequentially (133). Another technique uses localized heating, which generates
thermocapillary flow such that the heating increases the surface tension, which is the case in the
presence of specific surfactants, providing a blocking force to halt or diverge droplet flow (136).

Complex Integrated Systems

One of the main advantages of microfluidic systems in general and droplet microfluidic systems
specifically is that many different operations can be combined within a single device, allowing the
construction of complex assays (Figure 7). The aim of these systems is to develop lab-on-a-chip

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 7
Complex integrative systems incorporate multiple droplet control techniques for unique chemical assay applications. (a) A highly
integrative droplet device that incorporates droplet mixing, thermal cycling, gel electrophoresis, and fluorescent detectors to analyze
nanoliter-sized DNA samples. From Reference 139. Reprinted with permission from AAAS. (b) Droplets can be rapidly sorted when an
alternating current electric field is applied across the adjacent electrodes, deflecting the droplets into the upper channel. In the absence
of the field, the droplets flow into the lower channel (inset on right image). The activation of the AC electric field is determined upstream
by a fluorescence detector; therefore, target droplets that exhibit fluorescence above a baseline level will be deflected to the upper
channel. Reproduced with permission from Reference 138, copyright c© 2009, The Royal Society of Chemistry. (c) A user-loaded,
equipment-free SlipChip allows for multiplex performance of nanoliter-scale experiments by combining a sample with multiple reagent
types at multiple mixing ratios. SlipChip has been demonstrated in protein crystallization applications but is applicable to enzyme
kinetics studies, cell-based assays, and chemical reactions. Reproduced with permission from Reference 141, copyright c© 2010,
American Chemical Society.
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devices that perform many operations including sequential sample preparation, reaction, detection,
and analysis in a single device. However, even though such devices are theoretically possible, the
commercialization and widespread development of these fully integrated and automated systems
are still largely in the future. Integrating components into a single system significantly increases
the difficulty of system design and operation compared with single-component systems.

One of the first highly integrated droplet microfluidic analysis systems consisting of fluidic
channels, heaters, temperature sensors, and fluorescence detectors was developed in 1998 (139).
The device required minimal external equipment (several air lines to initiate drop motion, an LED
for fluorescent excitation, and power/computer connections) and did not require external optics
(e.g., a microscope), valves, heaters, or pumps. Aqueous reagents could be sequentially metered
and dispensed, solutions mixed, DNA amplified, and products separated and detected. This system
allowed for smaller samples and increased detection speeds as compared with conventional systems,
but was limited as it lacked on-chip sample preparation and used uncommon reaction protocols
[i.e., strand displacement amplification (SDA)].

Current DNA analysis chips use the more common PCR because of the wide applicability of
the reaction to clinically relevant assays (140). Conventional benchtop PCR is limited in that the
large number of preparation steps often results in sample loss and contamination (102). Significant
advancement toward complete lab-on-a-chip PCR technology has been made with the integration
of on-chip thermal cyclers, electrophoresis, and detection (139). However, these highly integrated
systems lack the ability to run multiple reactions in parallel. A recently developed droplet-based
microfluidic device integrates sample preparation and PCR analysis as well as the ability to process
multiple samples in parallel in a semiautomated fashion (140). Current research in this field focuses
on the optimization of a fully integrated PCR device, the development of automated control
systems, and the ability to conduct single-cell analysis PCR studies with high throughput and
sensitivity (102).

Droplet microfluidic technology is also used for enzyme assays and chemical reaction analysis,
as isolated reactions can be conducted concurrently at high throughput. Recently, there has been
interest in developing multiplexed kinetic reaction systems to study chemically diverse samples; in
this case, many droplets containing different ratios or types of reagent or solution can be chemically
analyzed in parallel. With an automated technique to fuse samples with reagents at multiple mixing
ratios, large-scale screening assays for enzymatic, drug-discovery, or crystallization studies would
be possible (141). Screening times can be further reduced if detection methods that monitor the
reaction kinetics in array systems or in constant flow conditions are incorporated and automated
(142, 143).

FUTURE OUTLOOK

Microfluidic systems have the capability to replace many conventional macroscale systems because
of their low consumption of reagents and samples, ability to manipulate small volumes with ease,
and high speed of reactions and separations. Furthermore, processes in microfluidic systems are
conducted at scales more relevant to biological conditions (e.g., the volume of a single cell),
and highly parallel chips processing large numbers of samples can be constructed easily (144).
In recent years, there has been significant advancement in the development and implementation
of high-density microfluidic chips for a diverse range of applications in biological and chemical
analysis, and in the diagnosis and treatment of diseases (145). The general trend continues toward
a μTAS in which the system performs sampling, sample preparation and transport, chemical
reactions, and detection in a single, miniaturized platform (146). Specifically, interest is escalating
in using microfluidics for biosensing applications, for single-molecule or single-cell detection and
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analysis, and for the development of inexpensive, portable diagnostics that can be implemented in
developing countries for personal care (145).

Although the size of typical microfluidic channels is quite small (typically 10–500 μm in di-
ameter) there is significant interest in devices with even smaller dimensions, which has resulted
in the rapid emergence of nanofluidics, the study of fluidic transport at the nanometer scale. In
nanometer-sized channels, individual macromolecules such as DNA can be trapped and studied
(147). This steady decrease in dimensions approaches the limit of the continuum approximation
at which the Navier-Stokes equations break down. However, for water under normal conditions,
the continuum hydrodynamic limit remains robust down to dimensions of tens of nanometers;
thus, the Navier-Stokes equation remains accurate in most of these situations (148). Therefore, the
unique aspects of nanofluidics center on the study of surface effects not apparent at the micrometer
scale.

Despite significant advances in the young field of microfluidics, there remain limitations to
the widespread commercialization of this technology mainly because of economic considerations.
PDMS lithography and other material advances have significantly reduced the cost of microfluidic
substrates, but this may be only a fraction of the total cost. The cost of electronic chips typically
scales with the number of separate lithography steps (i.e., mask sets), and the same holds true for
microfluidic systems (149). In addition, multiple materials in the final device (e.g., laminations,
valve material), reagent addition to and storage on the chip, packaging of the final device, and
micro-macro connections with computers and/or fluidic control systems all add to the cost of
the assay system. Nevertheless, microfluidics possesses enormous potential, and the extensive
worldwide research to develop and commercialize fully automated and integrated systems will
most likely result in a wide variety of bioanalysis applications in the not too distant future.
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